ยูเนียน อินเตอร์เซกชัน คอมพลีเมนต์ของเซต





ยูเนียน (Union)

ยูเนียน (Union) มีนิยามว่า เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A ∪ B
ตัวอย่างเช่น
A ={1,2,3}
B= {3,4,5}
∴ A ∪ B = {1,2,3,4,5}
เราสามารถเขียนการยูเนี่ยนลงในแผนภาพได้ดังนี้

อินเตอร์เซกชัน (Intersection)

อินเตอร์เซกชัน (Intersection) มีนิยามคือ เซต A อินเตอร์เซกชันเซต B คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A และเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A ∩ B
ตัวอย่างเช่น
A ={1,2,3}
B = {3,4,5}
∴ A ∩ B = {3}
เราสามารถเขียนการอินเตอร์เซกชันลงในแผนภาพได้ดังนี้

คอมพลีเมนต์ (Complements)

คอมพลีเมนต์ (Complements) มีนิยามคือ ถ้าเซต A ใดๆ ในเอกภพสัมพัทธ์ U แล้วคอมพลีเมนต์ของเซต A คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U แต่ไม่เป็นสมาชิกของ A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A’
ตัวอย่างเช่น
U = {1,2,3,4,5}
A ={1,2,3}
∴ A’ = {4,5}
 เราสามารถเขียนการคอมพลีเมนต์ของเซตลงในแผนภาพได้ดังนี้
                     


complement

ไม่มีความคิดเห็น:

แสดงความคิดเห็น